Domain Reference Ontologies

Torsten Hahmann

Spatial Knowledge and Artificial Intelligence (SKAI) Lab
School of Computing and Information Sciences
University of Maine, Orono, ME

What is a domain reference ontology?

Three main criteria for classifying ontologies:

1. **Purpose**

2. **Scope**
 - Top-level (upper or foundational) ontologies (like BFO or DOLCE)
 - Generic (mid-level) ontologies (like OWL-Time, Geosparql, SOSA, ...)
 - Domain ontologies
 - Domain reference ontologies: *unifying a domain and tying the various domain ontologies to top-level and generic ontologies*
 - Application ontologies

3. **Representation Format**

What does a domain reference ontology look like?

- Exhibits many characteristics of foundational ontologies:
 foundational for their domain

1. Foundationally grounded
2. Broad coverage on the highest level in the domain: focuses on the key concepts and relations in the domain; but does not aim to capture the domain comprehensively
 - concepts that allow to link concepts and relations across domain ontologies
3. Specified in a highly expressive and fully machine-interpretable ontology language
 Provides “neutral” language to express semantic differences; Purpose is not to directly define the scientific terms (e.g. aquifer), but ontological helper concepts and relations
What does a domain reference ontology look like?

<table>
<thead>
<tr>
<th>Top-level Ontology</th>
<th>e.g., BFO, DOLCE, UFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic Ontology</td>
<td>e.g., HyFO</td>
</tr>
<tr>
<td>Domain Reference Ontology</td>
<td>e.g., GWML, INSPIRE</td>
</tr>
<tr>
<td>Domain Ontology</td>
<td>e.g., NHD</td>
</tr>
<tr>
<td>Application Ontology</td>
<td></td>
</tr>
</tbody>
</table>

- e.g., Location, Time
- e.g., HyFO
How is a domain reference ontology useful?

... not just another standard but represents deep knowledge of core domain concepts in a level of detail such that other domain ontologies/standards can be expressed using this terminology.

Example: Hydro Foundational Ontology (HyFO) as a domain reference ontology for the hydrology domain

- Role similar to an upper ontology but more specific about water concepts
- Helps to clarify semantics of water data standards in a unified language
- Supports formal ontological analysis of existing water data standards (e.g., GWML2)

How is a **domain reference ontology** useful?

... not just another standard but represents **deep knowledge of core domain concepts** in a level of detail such that other domain ontologies/standards can be expressed using this terminology.

- **HyFO** as a domain reference ontology for the hydrology domains
 - Role similar to an upper ontology but more specific about water concepts
 - Helps to clarify semantics of water data standards in a unified language

DOLCE
- Non-Agentive Physical Object
 - Hydro Rock Body
 - Geologic Unit
 - Aquifer Unit
 - Aquifer
 - Aquifer System
 - Basin
 - Confining Bed

HyFO
- Dependent Place Feature
 - Hydro Void
 - Hydrogeo Void
 - Aquifer Unit
 - Well
 - Well Water Body
 - Basin
 - Aquifer

GWML2
- Matter
 - Water Matter
 - Earth Material
 - Constituent
 - FB Surface
 - Spring
 - Interflow
 - Intraflow
 - Flow
 - Discharge
 - Recharge

How is a *domain reference ontology* useful?

... not just another standard but represents deep knowledge of core domain concepts in a level of detail such that other domain ontologies/standards can be expressed using this terminology.

- Supports formal ontological analysis of existing water data standards (e.g., GWML2)
 - Axiomatic foundation for integrating existing water data standards via logical extension

HyFO as Domain reference ontology

Container Object
The solid object where water can be located; e.g., the channel of a river, the rock body in an aquifer.

Matter
Material that constitutes a container or water object; e.g., solid rock matter, water matter.

Water Object
The liquid object located in the container/void; e.g. the spatio-temporal object that encompasses all the water in an aquifer.

Void
Space(s) in the container that can be filled with water; e.g., pores in an aquifer, depression in a channel.

When we talk about a “lake” or “river” in many domain ontologies, it may refer to different aspects:

1. the container: e.g. distinctions based on the river bed
2. the void: e.g. its shape or describing the maximum depth
3. the water object (e.g. water quality measurements)
4. or a combination of those:
 - “Water Features” = a (ever changing) water object and container and/or void that host it

Ongoing work on domain reference ontologies

- FEO: Forest Ecology Ontology *(applicable to other ecological domains)*
- Identifies and distinguishes key concepts:
 - Tree vs. TreeSpecies
 - Forest (land use classification) vs. ForestedArea (environmental system)
- Connect them to another and to other ontologies (e.g. Envo)
Other related ongoing efforts

❑ A domain reference ontology typically employs one or more patterns, but is intended to be reusable as an artifact (not just a template)

❑ Other ongoing effort on developing patterns and domain reference ontologies:
 ❑ Utility Connection pattern (utility infrastructure and their service interdependencies, e.g. medical facilities depending on clean water and power)
 ❑ Spatial and Temporal Aggregated Data (STAD) pattern (aggregated data like climate normal)

❑ Tools: macleod: https://github.com/thahmann/macleod
 ❑ automated reasoning with Common Logic ontologies (via translation to TPTP)
 ❑ automated extraction of OWL ontologies from Common Logic Ontologies
 ❑ using deeply axiomatized CL ontologies to produce more widely used versions

Hahmann, Powell: Automatically Extracting OWL Versions of FOL Ontologies. Proc. of ISWC 2021, 10.1007/978-3-030-88361-4_15
If you can, please join us for FOIS 2023: https://fois2023.griis.ca/

- Sherbrooke, Quebec: July 17-20th
 - ontology showcase and workshops still accept submissions
- Online portion: September 18-20th
 - 2h block each day with 3 presentations

Registration will open soon!

Maybe room for a summary from the Summit