
Ontology Summit 2020 Communiqué:
Knowledge Graphs

Ken Baclawski, Northeastern University, Boston, MA USA
Michael Bennett, Hypercube Limited, London, UK
Gary Berg-Cross, ESIP Semantic harmonization Co-Lead
Todd Schneider, Engineering Semantics, Fairfax, VA USA
Ravi Sharma, Senior Enterprise Architect, Elk Grove, CA USA
Janet Singer, INCOSE, Scotts Valley, CA USA
Ram D. Sriram, National Institute of Standards Technology, Gaithersburg, MD USA

Abstract: An increasing amount of data is now available from public and private sources.  Furthermore,
the types,  formats,  and number of sources of  data  are  also increasing.   Techniques  for  extracting,
storing, processing, and analyzing such data have been developed in the last few years for managing
this bewildering variety based on a structure called a knowledge graph.  Industry has devoted a great
deal of effort to the development of knowledge graphs, and knowledge graphs are now critical to the
functions of intelligent virtual assistants such as Siri, Alexa, and Google Assistant.  The goal of the
Ontology Summit 2020 was to understand not only what knowledge graphs are but also where they
originated, why they are so popular, the current issues, and their future prospects.  The summit sessions
examined many examples of knowledge graphs and surveyed the relevant standards that exist and are
in  development  for  knowledge  graphs.   The  purpose  of  this  Communiqué is  to  summarize  our
understanding from the Summit in order to foster research and development of knowledge graphs.
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1. Introduction
While there is a long history of the use of knowledge graphs (KGs) across various domains, they have
proven in the last few years to be an especially important tool for semantic technology and research
areas.   As  structured  representations  of  semantic  knowledge  that  are  stored  in  a  graph,  KGs  are
lightweight versions of semantic networks that potentially scale to massive data repositories such as the
entire World Wide Web ("Semantic Network", 2020).  Industry has devoted a great deal of effort to the
development  of knowledge graphs,  and they are now critical  to the functions of intelligent  virtual
assistants such as Siri, Alexa, and Google Assistant.  Some of the research communities where KGs are
relevant include applied ontology, big data, linked data, Open Knowledge Network (OKN), artificial
intelligence (AI), and deep learning.

The Ontology Summit 2020 examined KGs from several perspectives during a series of virtual sessions
held from September 2019 to June 2020.  This Communiqué synthesizes and summarizes the findings
of  this  series.   The  Ontology Summit  2020 was organized  by question  words  whose  answers  are
considered basic for information gathering, problem solving, or establishing a context.  These questions
include the traditional Five Ws to which we added "How", "Whence", and "Whither", as shown in
Figure 1.  Accordingly, this Communiqué is organized based on these question words.  In order to



promote  a  consistent  terminology for  the  notion  of  a  KG, we begin  in  Section  2 by  proposing a
practical answer to "What" with a definition of a KG based on definitions published in the literature as
well as on invited speakers and discussions during the summit.  Section 3 gives some suggestions for
"Why" KGs have recently begun to be popular, as well as from "Whence" KGs arose.  Section 4 is
devoted to addressing "How", "Who", "Where", and "When" by examining examples of techniques and
tools used by the many activities of KG systems.  Sections 5, 6, and 7 are concerned with "Whither".
Section 5 lists standards and standardization efforts relevant to KGs, and Section 6 lists some of the
problems and challenges of KGs that were identified by the Ontology Summit.  Section 7 speculates
about the future prospects of KGs.  The Communiqué ends with a conclusion and acknowledgments.

Figure 1: The Context Questions

The Ontology Summit 2020 covered a great deal of material.  This Communiqué only outlines the main
points of the 32 sessions that occurred over 9 months.  Consequently, much of what took place is not
covered in this article.  It is our intention to present the findings of the summit more completely and in
more detail in a series of articles to be published separately.

2. What is a Knowledge Graph? 
We begin by addressing the question of what a knowledge graph is.  Unfortunately, there are a great
many  academic  papers  as  well  as  websites  and  companies  that  have  proposed  many different
definitions.   To  synthesize  a  coherent  definition  that  helps  frame  the  discussion  about  KGs,  the
definitions in references (Krötzsch and Thost,  2016; Paulheim, 2017;  Blumauer,  2014; Färber,  Ell,
Menne, Rettinger, and Bartscherer, 2018; Pujara, Miao, Getoor, and Cohen, 2013; Rohrseitz, 2019;
Aijal, 2019; Bergman, 2019; Aasman, 2019) were reviewed.  They had the following common features:

1. A KG represents interrelationships.  All of the definitions specify this feature but do so in different
ways.

2. A KG uses techniques to extract knowledge from one or more sources.  The kinds of sources differ
from one definition to another.



3. The organization is a graph, although the precise meaning of "graph" varies from one definition to
another.

4. While a KG must have a schema, not all KG definitions mention it.  Those that do mention it specify
that the schema defines classes and relations.

5. The KG supports various graph-computing, search, and query interfaces.  The supported operations
and performance will  vary,  and the performance will  depend on how trade-offs among scalability,
performance, and maintainability are handled as well as on other technical issues.

From these features it is apparent that a KG is not simply another way to represent facts.  It involves a
software  architecture that includes active capabilities for extracting and processing the facts.   Jans
Aasman (2019) characterized the operations of a KG as follows:

 Generation:

◦ Collection: Ingestion, web extraction, catalog extraction, ontology, ...

◦ Processing: Schema mapping, entity resolution, cleaning, ...

 Storage

 Applications: Querying, graph mining, recommendation, search, question answering, ...

 Statistical and machine learning techniques are used for all of the above

Another example of a definition was given by Nicola Rohrseitz as follows:

"A Knowledge Graph is a set of datapoints linked by relations that describe a domain, for
instance a business, an organization, or a field of study. ... Knowledge Graphs are secondary
or  derivate  datasets:  They  are  obtained  by  analyzing  and  filtering  the  original  data.  ...
Knowledge Graphs are also sometimes called semantic networks.  Semantic emphasizes the
fact that the meaning is encoded together with the corresponding data.  This is done through
the taxonomies and ontologies ..." (Rohrseitz, 2019)

Rohrseitz went on to describe how KGs are constructed and used.  This description is similar to the
characterization of KGs given by Jans Aasman above.

The fact that it is the operations of a KG that are its primary distinguishing feature may be the reason
for the confusion about what a KG is.  It has also led many to characterize KGs as being "nothing new"
and as simply another buzzword.  Unfortunately, the term "knowledge graph" is partly to blame for
this.  It tends to suggest that a KG is no more than a special kind of graph or network.  Accordingly, it
might  be  helpful  to  employ a  term that  is  less  confusing  such as  "knowledge graph  architecture"
(KGA), which is defined below.  Figure 2 is one example of a KGA.



Figure 2: A Knowledge Graph Architecture from (Yuan, Zhang, Dai, Peng and Zhao, 2018)
HTML is the Hyper Text Markup Language and XML is the Extensible Markup Language

The architecture for a KG system is analogous to the architecture for a data warehouse (DW).  DW
technologies have been used to integrate and harmonize data so that analysts and users can reliably
extract meaning from their large enterprise datasets.  But while well-established, the DW approach
involves  significant  up-front  and  ongoing  costs,  as  well  as  serious  risks.   Further,  due  to  data
complexity,  DWs don’t  address  significant  areas  of  enterprise  data.   However,  to  be fair,  the  KG
approach  also  can  have  significant  costs  and  complexity.   Data  warehousing  leverages  older
technologies that lack the flexibility of KGs, making them too slow to meet the ever-changing demands
of Big Data.  KG systems offer a more modern, flexible and  dynamic approach to data sharing and
integration; and, as discussed in Section 4, many different methods and technologies are employed by
KG systems.

These findings lead to the following proposal for a definition of a KG and KGA:

A KG is a representation of a set of statements in the form of a node- and edge-labeled directed
multigraph  allowing  multiple,  heterogeneous  edges  for  the  same  nodes.   A collection  of
definitional  statements specifying the meaning of  the knowledge graph's  labels is  called its
schema.

A KGA provides a combination of scalable technologies, specifications, and data cultures for
representing densely interconnected statements derived from structured or unstructured sources
across domains in a reasonable way that is both human- and machine-readable.

A KGA together with a collection of KGs is a KG system (KGS).

A "node- and edge-labeled directed multigraph" is an 8-tuple (V, E, s, t, ΣV, ΣE, ℓV, ℓE) such that



    1. V is a set of nodes and E is a set of edges.

    2. s: E  V⟶  and t: E  V⟶  are functions that specify the source and target nodes of the edges.

    3. ΣV is a set of node labels, and ΣE is a set of edge labels.

    4. ℓV: V  Σ⟶ V and ℓE: E  Σ⟶ E are functions that specify the labels of the nodes and edges.

As KGs and KGAs are engineering artifacts, they have associated processes for development, testing,
validation, management, and the overall lifecycle.  By analogy with DataOps (Liebmann, 2020), the set
of practices that combines all of these processes with the KGS might be called the KnowOps.  Despite
the name "knowledge graph", there is no requirement that the statements be implemented as a graph.  A
collection of KG systems could themselves be the sources for an overarching KG that fuses the source
KGs.

While ontologies are not specified in the definition of a KG, they can play an important role even
though this role varies.  Some KGs incorporate an ontology as part of the structure, in which case the
notions of KGs and ontologies are essentially equivalent.  In other cases, the KG and ontology are
decoupled, and it is possible for one KG to have more than one associated ontology so that an ontology
plays the role of a relational database view.

3. Why use Knowledge Graphs?
We now examine the question of why KGs and KG systems have become popular.  This is part of the
broader  question  of  why  one  bothers  with  information  at  all,  a  question  provocatively  asked  by
Matthew West (West, 2020).  Within that broader context, Jans Aasman suggested several reasons why
KGs have recently become so popular (Aasman, 2019).

In business, information is used to support decisions.  If information required for a decision is missing
or inaccurate, the risk of a mistake increases.  So, to support a decision, information needs to be fit for
purpose, which means information management is a quality management process where information is
the product. 

But how does one know what the information requirements are?  It turns out that asking people for
their requirements gives unreliable results.  A better approach is to document the processes to the level
where key decisions are explainable.  It is then possible to document the information requirements for
those decisions.

Information  has  a  lot  of  properties,  but  only  some  of  them are  critical  for  its  use  in  supporting
decisions.  One of the hardest properties to achieve is consistency.  If data is consistent, then when it
arrives from different sources it can just be brought together and used immediately.  Consistent data
uses  the  same  data  model  and  reference  data  (or,  if  you  prefer,  knowledge  graphs  of  the  same
ontology).  However, if the sources are not consistent, either individually or with each other, then one
must not only extract information from sources but also resolve the inconsistencies.  Consequently, it is
necessary to develop a set of tools for this purpose.  In other words, there is a need for a software
architecture for the information.

Given that one needs a system for capturing knowledge, a natural question is what it is that made KGs
so popular.  While one can only speculate about the reasons, the following are plausible explanations:

 Graph databases are now accepted as the best technology to store complex semantic data.



 People are no longer afraid of taxonomies, although ontologies are still intimidating.

 Entity extraction and Natural Language Processing (NLP) are almost a commodity now with
spaCy,  Bidirectional  Encoder  Representations  from  Transformers  (BERT),  IBM  Natural
Language Understanding, and many other tools.

 Machine learning and advanced analytics are now available in the cloud. (Aasman, 2019)

Note that a capability for reasoning/inference is not in this rationale.  Indeed, there are successful KG
systems that either have a minimal schema or do not have significant emphasis on the schema.  That
said, there is general agreement about the usefulness of ontologies for KG systems.

4. Knowledge Graph Techniques and Tools
In this  section we provide a sample of the kinds of techniques and tools being used in and being
developed for KGs.  Section 4.1 describes various forms of reasoning and mathematical techniques
from probability theory and category theory for KGs.  Then, in Section 4.2, we describe the Open
Knowledge Network, a U.S. National Science Foundation program for KGs that is supporting some of
the projects in the subsequent subsections.  One important challenge for KGs is spatial and temporal
reasoning, and Section 4.3 presents two projects addressing this.  The rest of this section is devoted to
projects in some of the many domains for which KG techniques have been applied.  Section 4.4 is
concerned with extracting KGs from scientific  publications,  Section 4.5 is  concerned with KGs in
product  design  and  manufacturing,  Section  4.6  describes  two  applications  of  KGs  to  government
problems, and Section 4.7 proposes to use KGs for a new kind of dynamically interactive textbook.
For more details about each project, please see the link to the associated slide or video presentation
given by the cited reference.

4.1 Techniques

Despite the varying definitions of the notion of a KG, there is a common goal: to use these KGs to gain
important insights and make data-driven discoveries.  Anirudh Prabhu defines “insights” as important
patterns, trends, and concordant information obtained from the knowledge graphs, especially in cases
where  such  features  are  not  obvious  from  simple  data  exploration  tasks  (Prabhu,  2020).   Using
reasoners  to  gain  insights  and make inferences  about  the data  is  a  method commonly  known and
utilized in the Semantic Web community.  But by utilizing methods (both visual and analytical) known
in network science, one can identify previously unseen patterns and trends and use these insights to
generate  or  validate  hypotheses  and aid in  scientific  discoveries.   Global  metrics  are  used to  gain
insights about the entire network structure and compare two or more networks with each other.  Local
metrics are used to inspect individual network structure and find important trends within that network.
Community detection algorithms are used to mathematically identify groups of nodes within a network,
usually based on how these nodes are connected to each other.  Lastly, Prabhu examined (both visually
and mathematically) the evolution of a network based on the change in a specific data feature (e.g.,
time, pressure, or temperature) to identify how the addition or removal of a node (or set of nodes)
affects the overall network structure. 

Another approach to gain insights is to use probabilistic KGs as presented by (Srihari, 2020).  These
KGs incorporate statistical models for relational data.  Triples are assumed to be incomplete and noisy.
There are two main types of models: latent feature models and Markov random fields (MRFs).  Latent
feature  models  can  be  trained  using  deep  learning.   MRFs  can  be  derived  from  Markov  Logic
Representations of facts in a database.



Yet another technique for gaining insights is to use the mathematical theory of categories and functors.
In  "Composing  Knowledge  Graphs,  inside  and  out",  Spencer  Breiner  explained  how some of  the
limitations of graph-based knowledge representations can be addressed formally by using foundational
methods from category theory (Breiner, 2020).  While category theory is regarded as very abstract even
among  mathematicians,  categories  are  in  fact  closely  related  to  KGs.   A category  consists  of  a
collection of objects and arrows (directed links) between them, which is exactly what one means by a
directed graph.  This approach can be applied to practical issues.  To illustrate its use for a practical
issue, the problem of open-shop scheduling in operations research was presented using category theory.

4.2 The Open Knowledge Network Program

OKN is a program of the U.S. National Science Foundation whose goals include the development of
the following:

 An advanced science data  infrastructure  that  is  interoperable and has  an open architecture,
making it easier to access and link heterogeneous data products

 An  open  semantic  information  infrastructure  to  discover  new  knowledge  from  multiple
disparate knowledge sources

 A nonproprietary shared knowledge infrastructure, with a particular focus on publicly available
data, e.g., U.S. government, scientific data, and other similar public datasets (Baru, 2020)

The OKN benefits multiple applications domains, including science and engineering research.  More
succinctly, it is “A Siri for Science."  The common themes for sponsored OKN projects include:

 Integrating heterogeneous types of data

 Accommodating dynamic information

 Supporting access by and contributions to the KG by heterogeneous communities of users

 Incorporating  new  information  into  the  knowledge  graphs  using  machine  learning  and
crowdsourcing approaches

Some of the projects described below are sponsored by the OKN program.

4.3 Temporal and Spatial Projects

One challenge facing KGs is the problem of representing time and space.  Even very powerful AI
systems can falter in dealing with time.  If you ask Google “How old is Joe Biden?” or “How old is
Mitch McConnell?”, you get the correct answers; but if you ask “Who is older, Joe Biden or Mitch
McConnell?”, all you get are links to articles that mention both politicians.  The problem is that while
KGs typically do include temporal features of entities, they are treated as little more than textual strings
with no other semantics.  Furthermore, many features and relations that are in fact time-dependent,
such  as  the  spatial  extent  of  countries,  are  treated  as  timeless.   This  situation  is  surprising  since
temporal reasoning is highly developed in AI and database management.  Some aspects of temporal and
spatial reasoning were covered in the Ontology Summit 2018 on Context and Ontologies (Baclawski et
al, 2018).  Additionally, standards bodies have been developing temporal and spatial representation and
reasoning standards as discussed in Section 5.  Unfortunately, within KGs time is an afterthought if it is
included at all.  Spatial reasoning has similar challenges, although the need for spatial reasoning is less
common than for temporal reasoning.  The KG research community should explore all aspects of time
and  space,  from  the  abstract  to  the  concrete,  from  general  purpose  reasoning  to  highly  specific
applications.  In the long run, the benefits to AI systems of effective, flexible temporal and spatial



reasoning will be large (Davis, 2020).  The following two projects are attempting to respond to this
challenge.

The  KnowWhereGraph  developed  by  Krzysztof  Janowicz  is  a  project  that  takes  a  geographic
information  system (GIS)  to  the  next  level,  by  providing  open  graph-based  linking  and  semantic
enrichment technologies far beyond pre-defined data themes and silos (Janowicz, 2020).  The ultimate
goal is to understand how to engineer meaningful features (independent variables) via a KG-based GIS
for downstream models such as supply chain forecasting or soil health mapping by including spatial-
temporal semantics.

Sean Gordon is part of a team that is prototyping an OKN for spatial decision support (Gordon, 2020).
Based on existing work by members of the team, four case study sub-teams were created that are
working on needs analysis for multi-stakeholder organizations focused on three core environmental
themes (water quality, wildland fire, biodiversity) in different regions of the western U.S.; and one case
study sub-team was  created  that  is  working on a  professional  body of  knowledge  for  geographic
information science and technology.  Each of the four case study sub-teams used interviews and/or
workshops to have collaborators identify need-to-know-concerns and questions.  This approach helped
prioritize a) schema for a KG that will support decision making for each theme; b) spatial decision
support resources to add to the KG; and c) particular use cases.

4.4 Scientific Publishing

Figure 3: Links among entities of scientific knowledge from (Gil, 2020)

The main output of Science is publications.  There are around 30 000 journals, and about two million
papers are published every year.  Efforts to extract the knowledge in the scientific record predate the



World Wide Web (Baclawski, Futrelle, Fridman, and Pescitelli, 1993; Baclawski et al, 1993).  Yolanda
Gil describes seven ontologies that provide essential capabilities, but much work remains to be done to
capture more comprehensively the scientific record.  Are we far from a day when each scientific article
will  be  properly  linked  to  hypotheses,  models,  software,  provenance,  workflows,  and  other  key
scientific entities on the Web as shown in Figure 3?  Will AI research tools then be able to access this
information to generate new results?  Will AI systems ultimately be capable of autonomously writing
scientific papers in the future? (Gil, 2020)

4.5 Manufacturing

The mission of the Manufacturing Open Knowledge Graph (MOKN) project is to structure the world’s
public information on product design and manufacturing (Starly, 2020).  MOKN’s broader impact is to
make information available regarding sourcing critical  part  components,  instantaneous gathering of
specific manufacturing capabilities, location of those services, and availability of resources.  The global
pandemic  crisis  serves  as  a  contextual  example  as  to  the  value  of  this  knowledge  especially  for
alternate sourcing and prequalification of vendors – with implications for public health and national
security.  Accessibility also empowers rural and suburban communities dependent on manufacturing
services.

4.6 Government

Matthew West is involved with an ambitious attempt in the UK to develop a Digital Twin of the entire
national infrastructure.  The aim is to establish a distributed Digital Twin of consistent data so that
authorized  users  can  construct  queries  across  the  Digital  Twins  in  order  to  answer  questions  like
"Which  Tower  Blocks  have  the  same  type  of  cladding  as  Grenfell  Tower?"   The  Information
Management Landscape sets out the information needed to support the critical properties of data and
the information quality management process.  Part of this infrastructure is an integration architecture
that  allows  the  distributed  National  Digital  Twin to  be  virtualized  so  users  can  see  it  as  a  single
database with access only to the data they are authorized to see (West, 2020).  In effect, this is a KG
system for which the underlying source data is extracted from a large collection of KG systems, each of
which is devoted to a single city or small region.

The Rich Context project described by Paco Nathan is the KGA of the Administrative Data Research
Facility  (ADRF) platform is  currently used by 50 federal,  state,  and local  agencies  in  the U.S.  to
identify people with specific expertise (Nathan, 2020).  ADRF was cited as the first example of Secure
Access to Confidential Data in the final report of the Commission on Evidence-Based Policymaking.

4.7 Education

College students today face the challenge of mastering concepts in new subject areas and relating those
concepts  across  multiple  disciplines,  yet  their  textbooks  have  the  "one  size  fits  all"  nature.   In
"Textbook Open Knowledge Network", Vinay K. Chaudhri presented Intelligent Textbooks (ITB) using
AI and KGs to solve these problems.  Students can dynamically interact with the textbook content,
increasing  their  ability  to  understand  concepts,  increasing  engagement,  and  thereby,  improving
academic performance (Chaudhri, 2020).

5. Standards
We now discuss some standards that are relevant for KGs.  What makes standards especially useful for
KGs  is  that  there  are  significant  distinctions  among  the  many  KGs  that  have  been  developed.
Standards  can  help  such  disparate  KGs to  interoperate.   Standards  also  serve  the  purpose  of  KG



development.  For example, one can develop a standard to represent objects and relationships for a
manufacturing KG, which can be used all over the world to develop KGs in a particular domain.  These
KGs can then be more easily integrated at a later stage.  KG systems differ not only in the sources for
their knowledge (e.g., the Web, sensor data in some domains, commercial transaction data, etc.) but
also in the operations for generating, processing, and utilizing the results.  For example, does the KG
system support reasoning?  If it does, then what kind of reasoning?  Is an entire KG accessible for
reasoning?  When reasoning or inferencing is used, there is an expectation that the result of such action
will produce results that are consistent with expected interpretation(s).  Such interpretation(s) are based
on distinctions among the entities involved in the inference and are expressed via the (usually, natural
language) symbols (also known as labels) used in the representation. 

A KG is  created to  meet  certain needs  and uses in  some context,  though the context  may not  be
sufficiently  or  explicitly  recognized  (or  represented).   Consequently,  a  KG  will  necessarily  have
limitations  of  coverage  (i.e.,  scope)  and  completeness  (level  of  detail),  which  will  hinder
interoperability.   There  are  several  ways to  deal  with  this  problem.   One  option is  to  employ an
ontological analysis when creating the KG.  Related to that is the use of a well-developed ontology as
the schema based on such an analysis.  Another option is to use applicable standards (e.g., engineering,
terminology, reasoning, etc.) which is the subject of this section.

In a paper on the role of standards in innovation, Allen and Sriram state "Standards are documented
agreements  containing  technical  guidelines  to  ensure  that  materials,  products,  processes,
representations, and services are fit for their purpose" (Allen and Sriram, 2000).  They then discuss
how  standards  introduced  at  the  right  time  will  lead  to  greater  innovation.   For  example,  the
standardized musical notation has spurred hundreds of years of creative music compositions.   

Lisa Carnahan further elaborated on standards and the process of creating standards in her Ontology
Summit talk "The IT Standard Process" (Carnahan, 2020).  In the U.S., standards are developed by
standards developing organizations (SDO).  An SDO is any organization that develops and approves
documented standards using various methods to establish consensus among its participants.  There are
hundreds  of  SDOs.   Such organizations  may be:  accredited  (e.g.,  the  International  Committee  for
Information  Technology  Standards  is  accredited  by  the  American  National  Standards  Institute);
international  treaty-based  (e.g.,  International  Telecommunication  Union-Telecommunication,
International  Civil  Aviation  Organization);  international  private-sector  based  (e.g.,  International
Organization  for  Standardization  (ISO),  Institution  of  Engineering  and  Technology  (IEC)  or  the
Institute  of  Electrical  and Electronics  Engineers  (IEEE));  an  international  consortium (e.g.,  Object
Management Group (OMG), Organization for the Advancement of Structured Information Standards
(OASIS),  Internet  Engineering  Task  Force  (IETF),  or  World Wide Web Consortium (W3C));  or  a
government agency (e.g., Department of Defense, Department of Homeland Security, National Institute
of Standards & Technology (NIST)).

One of the SDOs is the ISO, the world's largest developer of voluntary international standards.  Barry
Smith spoke at the Ontology Summit about his experiences with improving interoperability of KGs,
emphasizing ISO/IEC 21838 (Smith, 2020).  This standard is titled "Information technology — Top-
level ontologies" and includes as one of its parts, the Basic Formal Ontology (BFO).  Ontologies have
been enormously successful in the biomedical field for some 20 years, where the Gene Ontology (GO),
the first version of which was created in 1998, was referred to from the very beginning as a ‘directed
acyclic graph’ representing knowledge about genes and gene products.  The foundational ontology of
GO is the BFO.  With the growth in impact of the data from the human and other model organism
genome  projects,  the  data-annotation  needs  of  the  biomedical  informatics  world  expanded



tremendously,  and this  led to  the creation of  new ontologies,  for  example for proteins,  cell  types,
diseases, and others.  This expansion of ontology development continues to this day with the new
COVID-19 ontology.  The influence of BFO in non-medical domains is indicated also by the reception
of the ISO/IEC 21838 standard in areas such as digital manufacturing, particularly through the creation
of the Industrial Ontologies Foundry (IOF).  Under the auspices of this entity, work is on-going to
relate BFO to current developments on the Standard for the Exchange of Product model data (ISO
10303) and the manufacturing technology standard (MTConnect) for factory device data ("Industrial
Ontology Foundry", 2020).

The W3C is the main SDO for the World Wide Web.  The W3C standards that are most closely related
to KGs are the Resource Description Framework (RDF), RDF Schema (RDFS) and the Web Ontology
Language (OWL).  RDF is a graph-based modeling language, while RDFS and OWL are ontology
languages layered on RDF.
    
Another SDO is the OMG that is best known for the Unified Modeling Language (UML), the Meta-
Object Facility (MOF), and the Model Driven Architecture (MDA).  Elisa Kendall provided an update
on  OMG standards  and  activities  that  are  relevant  to  ontologies  and  KGs  (Kendall,  2020).   The
Ontology Platform Special Interest Group (OPSIG) has been an active, contributing working group for
15+  years.   So  far,  the  following  Platform  standards  have  been  published:  Ontology  Definition
Metamodel  (ODM);  Distributed  Ontology,  Model  and  Specification  Language  (DOL);  Languages,
Countries  and Codes  (LCC);  and the  MOF to  RDF Mapping  –  MOF2RDF.   The  OMG has  also
published  several domain-specific  ontologies,  including  the  Financial  Industry  Business  Ontology
(FIBO), Financial Instrument Global Identifier (FIGI), and the Information Exchange Packaging Policy
Vocabulary  (IEPPV).   A Robotic  Service  Ontology  is  now being  prepared  jointly  with  the  IEEE
Robotics community.

Other standards that are related to KGs include Case Management  Model and Notation (CMMN),
Decision Model and Notation (DMN), Date Time Vocabulary (DTV), Production Rule Representation
(PRR), and Semantics of Business Vocabularies and Rules (SBVR).  Still others are in preparation.
However, there will not be one gold standard for KGs.  Several standards will emerge and will need to
be judiciously mixed.

Common  Logic  (CL)  is  the  ISO/IEC  standard  for  First-Order  Logic  (ISO/IEC  24707:2007).   In
"Knowledge Graphs and Logic", John Sowa gave an overview of CL and related standards for logic
(Sowa,  2020).   The  CL  standard  includes  specifications  for  three  dialects:  the  Common  Logic
Interchange Format (CLIF), the Conceptual Graph Interchange Format (CGIF), and an XML-based
notation for Common Logic (XCL).  The CLIP dialect combines the best features of two dialects, CLIF
and CGIF.  The primary design goals for CLIP are the following:

 Immediately readable by anyone who knows predicate calculus
 As readable as Turtle for the RDF and OWL subsets
 As readable as any notation for if-then rules
 Serve  as  a  linearization  for  a  wide  range  of  graph  logics,  including  conceptual  graphs,

existential graphs, KGs, RDF, OWL, and UML diagrams
 Query option: Select (list of names) where (any CLIP sentence)
 Support mappings between logics and natural languages

The DOL standard mentioned above is an OMG standard for integration and interoperation among
distributed  ontologies,  models,  and specifications  (OMS).   DOL is  formally  defined  by logic  and
mathematics.  In other words, DOL can integrate heterogeneous OMS by relating the logics that specify
them.



The financial services industry is an exceptionally large, mature, and data-intensive industry that has an
impact on virtually everybody.  Michael Bennett presented an overview of KGs in the financial sector
(Bennett, 2020).  While most of the historical standards in the financial services industry deal with
messaging requirements or data formats, there are also industry standards for formal semantics.  FIBO
was conceived to provide a common language across these messaging standards, while a more recent
initiative from the ISO Technical Committee dealing with financial services aims to supplement the
existing ISO 20022 XML messaging standard with formal semantics.  FIBO arose out of a need to
harmonize  terms  across  the  industry  as  a  common  language  for  reuse  of  data  in  reporting,  risk
management, and compliance.  This need arose out of a realization that, while it was hard to reach
agreement on common terms, the concepts themselves were well understood.

While the Financial Industry is a specific domain, it provides important lessons that are relevant to
ontologies and KGs in general.  For example, one distinction is whether to provide a deep hierarchy of
foundationally primitive terms based around a Top-Level Ontology (TLO) or not.  These are typically
not needed for OWL applications and have been removed from the OMG FIBO standard.  Another
distinction is whether the ontology represents real-world ‘truth-makers’ (assertions that give rise to the
meaning of a class of things) or data about things.  For example, to be a bank is to hold certain legal
capacities and capabilities, whereas to know something is a bank is to interrogate the available data for
some suitable ‘data signature’ that such capacities exist, in this case in the form of a banking license.
Ontologies therefore may be foundational for use as a point of reference or may be application-focused;
and they may be predicated on subject matter or on data about that subject matter.  These distinctions
may be dismissed by developers as unimportant, but if one does not address them the result is that
interoperability can be severely inhibited.

In  "Standards  and  Ontologies"  Michael  Grüninger  discussed  the  advantages  and  disadvantages  of
standardization of ontologies (Gruninger, 2020).  The problem with de facto standards is that ontologies
will  be adopted simply because they are popular  and widely used  even if they were not  properly
developed with sufficient evaluation and analysis.  The risk with this approach is ontologies could be
used that contain ontological errors, unintended models, and omitted models, or they could incorporate
implicit ontological commitments that prevent reuse.  The standards we need are, therefore, the ones
that  enable  the  evaluation  and  comparison  of  ontologies.   First  of  all  are  standards  for  ontology
representation  languages  with  formal  semantics  such  as  Common  Logic  (ISO  24707)  and  OWL.
Second are standards for the specification for mappings between ontologies and between logics,  a
prime example being DOL from OMG.  Finally, there are standardized axiomatizations of ontologies,
in particular ISO 18629 (Process Specification Language) and ISO 21838 (Top-Level Ontologies).

Much work remains to be done in the standards arena.   Recently,  the International  Association of
Ontology and its Applications (IAOA) established the Industry and Standards Technical Committee
(ISTC).  This committee has two core purposes:
    1. To foster the use of applied ontology in standardization initiatives,
    2. To facilitate the interactions across people in industry and in applied ontology research.
Activities within the ISTC include the dissemination of information about initiatives with the aim to
gather  experts  interested  in  the  development  of  ontologically  sound  standards.   The  ISTC  also
organizes virtual and physical meetings and events to discuss how to understand and apply ontological
approaches and methodologies, both in general and for KG systems in particular.



6. Challenges

Figure 4: A Pipeline for Building a KG

Methods of building a KG take us from raw, messy, and disconnected data/information that is hard to 
query, analyze, and visualize to a more refined, organized, cleaned, and linked product that is easier to 
visualize, query, and analyze.  Challenges exist at every step in this process including recursions as part
of a life cycle.  In this section we briefly list these challenges in Table 1.  The first column in Table 1 is 
an operation of a KGA.  These operations are labeled "KG Step" because they are usually the steps in a 
pipeline of operations such as that shown in Figure 4.  For each KG step there may be many problems 
and issues.  We list the most significant of these in the second column of Table 1.  The next column 
describes the context of the problem or issue.  The last column cites some references.  More details 
about these challenges will be published in a separate article.

Table 1: Knowledge Graph Challenges

KG Step Problem/Issue Context Notes Reference

Scoping Identifying best 
available sources
in the vast space 
of possibilities

Understanding 
usage and 
knowledge 
requirements

Determining which 
candidate facts should 
be included into a KG.

(Pujara, 
Miao, 
Getoor, and 
Cohen, 2013)

Data Acquisition 
and populations

Data volume, 
variety, speed, 
and validity. 
There may be too
little structured 
data to seed a 
graph

The space of 
needed data may 
be unknown.
Domain 
metadata and 
interdomain 
metadata evolve 
over time. 

We will not know all 
the types and 
relationships needed to
model. Need to explore
entity neighborhoods 
and compare neighbor 
entities and values.

(Dong, 2020)

Feature 
Extraction

Need mature 
processes to find 
types & create 
vector features 
usable by 

Besides technical
challenges, is 
there a need to 
validate 
extractions to 

Active learning, weak 
learning, distant 
supervision along with 
semi-supervised 
learning, transfer 

(Joshi, 2019; 
Dong et al, 
2020; Wang, 
Xu, Li, 
Dong, Gao, 
2020)



machine learning
models. 

Limited training 
labels for large-
scale, rich data.

Often hidden 
patterns, such as 
in headings, 
carry key 
relations, 
attributes, dates, 
etc.

understand if 
extracted features 
are aligned to 
human judgment?

learning, and meta-
learning are all 
techniques to address 
limited training data.

Mentalistic 
terminology of features
may be misleading to 
those outside of 
computer science. 
Important info is also 
in images, making 
features harder to 
extract.

Feature 
Alignment  

Heterogeneous 
data and large 
data spaces 
challenge 
alignment across 
many records.

Are two features 
the same?

Do “born” and 
“date of birth” 
mean the same?

Explore redundancy of 
data.

Are values of the same 
attribute in the same 
embedding space?

(Pham, Alse, 
Knoblock, 
and Szekely, 
2016; 
Taheriyan, 
Knoblock, 
Szekely, and 
Ambite, 
2016)

Entity Resolution Noisy data 
problems and 
scale. Alternate 
textual 
formulations are 
used.

Not all data is 
trustworthy and 
heterogeneous. 
Data and large 
data spaces 
challenge 
resolution across 
many records

This is a big challenge.
Statistical and machine
learning techniques are
used, but do we 
understand the range of
possible errors that 
could occur in 
extracted facts?

(Zhu et al, 
2020)



Final Graph 
Construction 

This step may 
include new 
links and 
confidences 
about facts and 
relations.

Working solution
may not scale up 
to more data.

As more data is 
added, different 
vocabularies are 
introduced and 
different patterns
may encode the 
same attribute.

Graph construction 
may be viewed as an 
incremental process 
with a final assembly 
that may include a 
check of semantic 
relations from a 
guiding ontology.

(Madison, 
Barnhill, 
Napier, and 
Godin, 2015; 
Deprizio, 
2020)

User Interfaces How flexible are 
the interfaces for 
the users?

Can the KG be 
easily visualized 
when showing 
relations and 
entity linking?

Is explanation 
provided?

Allow customers to 
specify info and say 
which requirement is 
less important as part 
of query relaxation or 
refinement

(He et al, 
2019)

Reasoning How well does 
the KGA support
temporal and 
spatial 
reasoning?

See the discussion in 
Section 4.3.

(Davis, 2020)

7. The Future of Knowledge Graphs

In this section we propose some possibilities for the future development and uses of KGs, primarily in
industry but also for the KG research community.

1. There will be a general acceptance of an effective definition of "knowledge graph".

2. KG developers will understand the need for a well thought out schema and how ontologies, or
at least ontological analysis, can aid in this.

3. KG developers will make use of linguistic analyses to help overcome the ambiguities of the use
of natural language terms (and identifiers).

4. KG  developers  will  incorporate  formal  distinctions  for  the  intended  interpretations  of  the
natural language terms and phrases used for the labels in a KG, rather than the unfortunate
practice of relying on assumed common interpretations for the semantics of such terms and
phrases.



5. KGs  will  be  used  in  the  creation  and  operation  of  software  intensive  systems  (e.g.,
representation of user interfaces).

6. Information systems architects will better exploit KGs and their infrastructure to support more
dynamic information systems.

7. Architectures will be developed to aid enterprises and their extensive information systems in a
transition to the use of KGs.

8. KGs will have a significant effect on data and knowledge management in general.

8. Conclusion
KGs are effective tools for information systems and are a very popular topic despite the lack of a
common definition for what a KG is.  This  Communiqué has examined the notion of a KG and has
made some progress toward specifying a succinct practical definition of what a KG is that not only is
compatible  with  the  main  published  definitions  but  also  elucidates  the  sources  of  the  confusion
surrounding the notion of a KG.  We have outlined the historical trends that converged on KGs and
proposed some of the reasons why KGs have become so popular.  Several examples of the techniques
being used by KGAs and the KG systems that have been developed were described.  Many standards
now exist or are being developed that are relevant to KGs.  While KGs have been successful, many
issues and problems still remain. 
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